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Temporal oscillations and phase transitions in the evolutionary minority game
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The study of societies of adaptive agents seeking minority status is an active area of research. Recently, it
has been demonstrated that such systems display an intriguing phase transition: agentselésédoegater
to clusteraccording to the value of the prize-to-fine raRoWe show that such systems dot establish a true
stationary distribution. The winning probabilities of the agents display temporal oscillations. The amplitude
and frequency of the oscillations depend on the valu®ofhe temporal oscillations that characterize the
system explain the transition in the global behavior from self-segregation to clustering Rithecase.
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[. INTRODUCTION characterized by extreme behavior. It was realized that in
order to flourish in such situations, an agent should behave in
The study of complex systems is a growing area of re-an extreme way{=0 or p=1) [1,2].

search. A problem of central importance in biological and On the other hand, in many real life situations the prize-
socioeconomic systems is that of an evolving population irto-fine ratio may take a number of different valudgl. A
which individual agents adapt their behavior according todifferent kind of strategy may be more favorite in such situ-
past experience. Of particular interest are situations in whictions. In fact, we know from real life situations that extreme
members(usually referred to as “agentg”compete for a  pehavior is not always optimal. In particular, our daily expe-
limited resource, or to be in a minoritisee, e.g., Refll],  rience indicates that in difficult situation®.g., when the
and references therginin financ_ial markets, for instanc_e,_ prize-to-fine ratio is low people tend to be confused and
more buyers than sellers implies hlgher prices, and it iSydecisive. In such circumstances they usually seek to do the
therefore better for a t_rader to be in a minority group o same(rather than the oppositas the majority.
sellers. Predators foraging for food will do better if they hunt Based on this qualitative expectation, we have recently

in areas with fewer competitors. Rush-hour drivers, facmgextended the exploration of the EMG to generic situations in

the choice between two alternative routes, wish to choose the, . . ) . . )
e - . Which the prize-to-fine ratidR takes a variety of different
route containing the minority of traffig3].

Considerable progress in the theoretical understanding azra!ues: It has been. ihov{M]_ thf‘t a s?_arp p_h_ase trarlsmon
such systems has been gained by studying the simple, ySf('StS_ n the model: cor_1fu3|on gnd |nde_c|5|ven_ess ta_1ke
realistic model of the minority gam@MG) [4] and its evo- _over in times of depreSjs!o(rIim which 'Fhe pr_lze-to-flne ratio
lutionary version(EMG) [1] (see also Refd5-13 and ref- 1S smaller than some critical vallrR,), in which case central
erences therejnThe EMG consists of an odd numberlgf ~ agents(characterized bp=3) perform better than extreme
agents repeatedly choosing whether to be in room (@t., ones. That is, foR<R;, agents tend teluster aroundp

choosing to sell an asset or taking rowg or in room “1” =3 (see Fig. 1 in Ref[14]) rather than self-segregate into
(e.g., choosing to buy an asset or taking rdBje At the end  two opposing groups.
of each round, agents belonging to the smaller gr@hpe In this paper we provide an explanation for the global

minority) are the winners, each of them gaiRgoints (the  behavior of agents in the EMG. The model is based on the
“prize” ), while agents belonging to the majority room lose 1 fact that the population never establishes a true stationary
point (the “fine”). The agents have a common “memory” distribution. In fact, the probability of a particular agent to
look-up table, containing the outcomes mwf recent occur- win, 7(p), is time dependenfThis fact has been overlooked
rences. Faced with a given bit string of recembccurrences, in former studies of the EMG. The winning probability os-
each agent chooses the outcome in the memory with prolsillates in time: the amplitude and frequency of the oscilla-
ability p, known as the agent’s “gene” valu@nd the oppo- tions depend on both the value of the prize-to-fine r&io
site alternative with probability % p). If an agent score falls and on the agent’s gene valpeThe smaller the value dg,
below some valug, then its strategyi.e., its gene valueis  the larger is the oscillation amplitude. In addition, “extreme”
modified (One can also speak in terms of an agent quittingagents(with p=0,1) have an oscillation amplitude that is
the game, allowing a new agent to take his plate.other larger than the corresponding amplitude of “central” agents
words, each agent tries to learn from his past mistakes, andhose withp=3).
to adjust his strategy in order to survive. We show that in theR>R. case, these oscillations are
Early studies of the EMG were restricted to simple situa-used by extreme agents to cooperate indirectly and to share
tions in which the prize-to-fine rati® was assumed to be the system’s resources efficiently. On the other hand, when
equal to unity(see, however, Ref6]). A remarkable conclu- R<R., agents cannot afford to share the limited resources.
sion deduced from the EM@] is that a population of com- They tend to cluster aroung= 3, preventing any possibility
peting agents tends teelf-segregaténto opposing groups of cooperation.
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Il. TEMPORAL OSCILLATIONS OF THE WINNING central agentcharacterized by=13), it is basically irrel-
PROBABILITIES evant which room is more probable to win in the next round

A partial explanation for thésteady stategene distribu- of th_e gamel. In either case, his winning probab_lllty 'S ap-
tion is given in Ref[7]. It has been found that the probabil- Proximately ;. In other words, the global gene distribution
ity 7(p) of an agent with a gene valyeto win is given by of the population has a larger influence on extreme agents as

compared to central ones.
7(p)=1/2—ap(1-p), (1) It is evident from Figs. 1 and 2 that the amplitude and the

) _ frequency of the oscillations increase as the value of the
wherea<1 is a constanfwhich depends on the number of i7e.to-fine ratioR decreases. It is important to note that Eq.
agents,N). This result is used to explain the better perfor—.(l) [7] is valid only for a stationary distribution of the gene
mance of extreme agents as compared to central ones, whighj es. However, we have shown that the steady state as-
leads to the phenomena of self-segregaftidnHowever, the  gymption is only marginally justified fdR=1, and far from
analytic model presented in R¢7] cannot explain the phase peing correct for smaller values of the prize-to-fine rdtio
transition (from self-segregation to clusteringbserved in To better quantify the temporal oscillations of the winning
the exact modef14]. . . probabilities, we display in Fig. 3 the corresponding Fourier

In Fig. 4 of Ref.[14] we have displayed the time depen- yansforms in the frequency domain. One finds that the trans-
dence of the average gene valys, for different values of  fom pecomes sharper as the prize-to-fine ratio decreases
the prize-to-fine raficR. It has been demonstrated that the j e | the oscillations are better characterized by a pure, well-
distribution P(p) oscillates arouncp=73. The smaller the gefined frequendy Figure 4 displays the dependences of the
value ofR, the larger are the amplitude and the frequency ofyscillation period(according to the peak of the transform
the osml]auons. Thus, we conclude that a pppulanon thalnd their amplitude on the prize-to-fine raRoThe period of
evolves in a tough environment never establishes a steadje oscillations decreases with decreasing valul, ofhile
state distribution. Agents are constantly changing their straty,q amplitude of the oscillations increases with decreasing
egies, trying to survive. By doing so, they create global curygj e ofR.

rents in the gene space. _ o We now provide a qualitative explanation for the temporal
The temporal oscillations dfp) induce larger oscillations  gcillation that characterizes the system. Consider for ex-
in the winning probabilities(p) of the agents. In Fig. 1 we  ample, a situation in whickip)<1 at a particular instant of
display the temporal dependence «fp=0) and7(p=3) time. In these circumstances, the winning probability of an
for R=1. Figure 2 displays the same quantities for the cas@gent with a gene value>1 is larger than (this is due to
of R=0.8. Both figures are produced from exact numericakne fact that most agents are located in the opposite half of
simulations of the EMG. We find that whefp) is even  the gene space, and are therefore making decisions that are
slightly higher thans, =(p=0) (the winning probability of  opposite to his decisionAt the same time, agents with
an agent who acts against the global memory outgasie <1 have a small winning probability, and they are therefore
almost unity. losing points on the average. Eventually, the scores of some
It should be emphasized that the winning probability of aof these agents fall below, in which case they modify their
central agent,7(3), displays only mild oscillations. For a strategy. The new gene values that are now joining the sys-
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tem lead to a global current of gene values from phes ing from (p)<3 to (p)>3, agents withp<3 are still more

side of the gene space to tipe>3 side. This increases the likely to change their strategy. Thus, the average gene value
value of (p), and eventually the system will cross from continues to increase. Eventually, agents wpith3 (the ones
(p)<3 to(p)>3. It must be realized that the reaction of the who now have poor winning probabilitiefse enough times
system to this transition is not immediate. Agents with and start to modify their strategy. This will drive the average
>1 are quite wealthy at this poirithey had large winning gene value back toward®)= 3. This periodic behavior re-
probabilities in the last few roungsThus, even though they peats itself again and again, producing the temporal oscilla-
start to lose(due to the fact that most of the population is tions that characterize the system.

now concentrated in their half of the gene spatieey donot
modify their gene values immediately. At the same time
some of the survived agents wifh< 3 are quite vulnerable
(after losing in the last few turmsimplying that one wrong The main feature that characterizes the system’s behavior
choice could drive their score below, forcing them to is the temporal oscillation of the winning probability. In or-
change strategy. In other words, immediately after the crossder to capture this effect, we consider two types of agents:

‘lIl. IMPLICATIONS OF THE TEMPORAL OSCILLATIONS
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. . . o FIG. 5. The life spans of agents andB as a function of the
the prize-to-fine ratidR. The parameters are the same as in Fig. 1.

prize-to-fine ratioR. d=—4. Agent A wins once every second
round of the game. AgerB has a constant winning probability of

agentA whose winning probability alternates repeatedly be-0 495

tween 1 and 0, and ageBtwhose winning probability is

constantin time. AgentA represents an extreme agemt ( . )
=0,1) whose winning probability oscillates in time, while depression the population tends to cluster aropinds.

agentB represents a central agemi=3) whose winning The simplified model can explain another interesting fea-
probability is practically constant in tim@ee Figs. 1 and)2 ~ ture of the full EMG: it was found in Ref[14] that the
and is slightly less thag [7]. relative concentratiofiP(0):P(3)] of agents aroungh=0

The two types of agents differ in the standard deviation oftandp=1) in theR=1 (R>R.) case is larger than the rela-
their success rate, a fact that dictates a different mean lifgye concentratior{ P(%):P(0)] of agents aroung=1% in
span. Consider for example, the simple cas®ef0 andd the R=0.971 R<R.) case(see Fig. 1 of Ref[14]). This
=—1. The mean life span of playéx is 13 rounds(aver- result can be explained by the fact that the life span differ-
aging over the two situations: starting the game with a vic-ence between the various agents is larger irRkel case as
tory, or losing in the first round of the gamdhe probability = compared with thdR<R, case(see Fig. .
of agentB to change his strategy afterrounds isq" (1 It should be realized that in order to have a long average
—q), and his mean life span is therefore given bylife span intheR>R, case, it is besbotto take unnecessary
song" }(1—q). This equals~1.98 for q=0.495 (this  risks. An agent who plays with a constafite., time-
value ofq is taken from theR=1 case. Thus, agenB has a  independentwinning probability(agentB) takes the risk of
longer mean life span. This conclusion is in agreement withlosing more times than he win@nd this may derive his
the results of the full nonlinear modéhe EMG), in which it ~ score belowd). The average life span of age®is therefore
was demonstrated that under tough conditidRs:R.) cen-  shorter than the corresponding average life span of agent
tral agents perform better than extreme ofreste that this is  who wins and loses exactly the same number of times.
despite the fact the the average winning probability of a cen- On the other hand, in thR<R; case, agentsusttake
tral agent is less than that of an extreme agedh the other  risks in order to survive. An individual agent cannot afford
hand, forR=1, agentA has an infinite life span, while himself to win and lose the same number of tintsisice the
lifespan of agenB is finite. Again, this is in agreement with fine is larger than the prizeln order to survive under harsh
the results of the full nonlinear model, according to whichconditions an agemhustwin more times than he loses. Thus,
extreme agentéwith large temporal oscillations in their win- in such conditions R<R;), agentB has a longer average
ning probability live longer than central ones in tiR>R,  life span as compared with ageAt(playing with a constant
case. winning probability is the best strategy to achieve more win-

Figure 5 displays the average lifespan of agehtndB  nings than lossek.
as a function of the prize-to-fine ratie. We find that the
simplified toy model provides a fairly good qualitative de-
scription of the complex system. In particular, in tRe=1
case, agenfA (the extreme oneperforms better(with a In summary, we have considered a semianalytical model
longer mean life spanthan agentB (the central ong in  of the evolutionary minority game with an arbitrary value of
agreement with the fact that the population tends to selfthe prize-to-fine ratidR. The main results and their implica-
segregate into opposing groups characterized by extreme btens are as follows.
havior[1]. On the other hand, foR<R. agentA performs (1) The winning probabilities of the agents display tem-
worse, in agreement with the findirjd4] that in times of  poral oscillations. The smaller the value of the prize-to-fine

IV. SUMMARY AND DISCUSSION
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ratio R, the farther the system is from a steady state distribuself-segregating into two opposing groups. Rather, they tend
tion (the larger is the amplitude of the oscillatignExtreme  to clusteraroundp=3. Playing with a constanti.e., time-
agents(ones withp=0,1) have larger oscillations in their independent winning probability (~3) provides an indi-
winning probability as compared with centrad€ 3) agents.  vidual agent with the best chance to win more times than he
Thus, extreme agents are sensitive to the global gene distipses[an extreme agent on the other hamdth large oscil-
bution of the populatioritheir winning probabilities display |ations in his winning probabilitywins and loses approxi-
large temporal osgillati_or)swhile centrgl a_gents have an al- mately the same number of tinledote that while playing
most  constant (time-independent winning  probability  \ith a constant winning probability is the only way to sur-

~3) ) vive in a tough environmerithe only way to win more times

(2) In the R>R; case, the population tends ®elf-  than losing, it is also the riskiest strategy: such an agent

segregatento opposinggroups. The winning probabilities of - takes the risk of losing more times than he wins.
these two groups oscillate in time in such a way that each The clustering phenomena create a situation in which the
group wins and loses approximately the same number gﬁopulation as a whole isot organized. Due to statistical
times. The efficiency of the system is therefore maximizedjyctuations, the average number of winners at each round of
due to the fact that at each round of the game, one of thgye game is less than half of the population, implying a low

groups (containing approximatehhalf of the population efficiency of the system as a whole.
wins. Thus, by self-segregation into two opposing groups,

the agents cooperate indirectly to achieve an optimum utili-
zation of their resources.
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