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Temporal oscillations and phase transitions in the evolutionary minority game
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The study of societies of adaptive agents seeking minority status is an active area of research. Recently, it
has been demonstrated that such systems display an intriguing phase transition: agents tend toself-segregateor
to clusteraccording to the value of the prize-to-fine ratioR. We show that such systems donot establish a true
stationary distribution. The winning probabilities of the agents display temporal oscillations. The amplitude
and frequency of the oscillations depend on the value ofR. The temporal oscillations that characterize the
system explain the transition in the global behavior from self-segregation to clustering in theR,1 case.
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I. INTRODUCTION

The study of complex systems is a growing area of
search. A problem of central importance in biological a
socioeconomic systems is that of an evolving population
which individual agents adapt their behavior according
past experience. Of particular interest are situations in wh
members~usually referred to as ‘‘agents’’! compete for a
limited resource, or to be in a minority~see, e.g., Ref.@1#,
and references therein!. In financial markets, for instance
more buyers than sellers implies higher prices, and i
therefore better for a trader to be in a minority group
sellers. Predators foraging for food will do better if they hu
in areas with fewer competitors. Rush-hour drivers, fac
the choice between two alternative routes, wish to choose
route containing the minority of traffic@3#.

Considerable progress in the theoretical understandin
such systems has been gained by studying the simple
realistic model of the minority game~MG! @4# and its evo-
lutionary version~EMG! @1# ~see also Refs.@5–13# and ref-
erences therein!. The EMG consists of an odd number ofN
agents repeatedly choosing whether to be in room ‘‘0’’~e.g.,
choosing to sell an asset or taking routeA) or in room ‘‘1’’
~e.g., choosing to buy an asset or taking routeB). At the end
of each round, agents belonging to the smaller group~the
minority! are the winners, each of them gainsR points ~the
‘‘prize’’ !, while agents belonging to the majority room lose
point ~the ‘‘fine’’ !. The agents have a common ‘‘memory
look-up table, containing the outcomes ofm recent occur-
rences. Faced with a given bit string of recentm occurrences,
each agent chooses the outcome in the memory with p
ability p, known as the agent’s ‘‘gene’’ value~and the oppo-
site alternative with probability 12p). If an agent score falls
below some valued, then its strategy~i.e., its gene value! is
modified ~One can also speak in terms of an agent quitt
the game, allowing a new agent to take his place.! In other
words, each agent tries to learn from his past mistakes,
to adjust his strategy in order to survive.

Early studies of the EMG were restricted to simple situ
tions in which the prize-to-fine ratioR was assumed to b
equal to unity~see, however, Ref.@6#!. A remarkable conclu-
sion deduced from the EMG@1# is that a population of com
peting agents tends toself-segregateinto opposing groups
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characterized by extreme behavior. It was realized tha
order to flourish in such situations, an agent should behav
an extreme way (p50 or p51) @1,2#.

On the other hand, in many real life situations the priz
to-fine ratio may take a number of different values@14#. A
different kind of strategy may be more favorite in such si
ations. In fact, we know from real life situations that extrem
behavior is not always optimal. In particular, our daily exp
rience indicates that in difficult situations~e.g., when the
prize-to-fine ratio is low! people tend to be confused an
indecisive. In such circumstances they usually seek to do
same~rather than the opposite! as the majority.

Based on this qualitative expectation, we have recen
extended the exploration of the EMG to generic situations
which the prize-to-fine ratioR takes a variety of different
values. It has been shown@14# that a sharp phase transitio
exists in the model: ‘‘confusion’’ and ‘‘indecisiveness’’ tak
over in times of depression~for which the prize-to-fine ratio
is smaller than some critical valueRc), in which case centra
agents~characterized byp5 1

2 ) perform better than extrem
ones. That is, forR,Rc , agents tend tocluster aroundp
5 1

2 ~see Fig. 1 in Ref.@14#! rather than self-segregate int
two opposing groups.

In this paper we provide an explanation for the glob
behavior of agents in the EMG. The model is based on
fact that the population never establishes a true station
distribution. In fact, the probability of a particular agent
win, t(p), is time dependent. This fact has been overlooke
in former studies of the EMG. The winning probability o
cillates in time: the amplitude and frequency of the oscil
tions depend on both the value of the prize-to-fine ratioR
and on the agent’s gene valuep. The smaller the value ofR,
the larger is the oscillation amplitude. In addition, ‘‘extreme
agents~with p50,1) have an oscillation amplitude that
larger than the corresponding amplitude of ‘‘central’’ agen
~those withp5 1

2 ).
We show that in theR.Rc case, these oscillations ar

used by extreme agents to cooperate indirectly and to s
the system’s resources efficiently. On the other hand, w
R,Rc , agents cannot afford to share the limited resourc
They tend to cluster aroundp5 1

2 , preventing any possibility
of cooperation.
©2003 The American Physical Society09-1
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FIG. 1. Temporal dependence of the winnin
probabilities for R51. The results are forN
510 001 agents, andd524. t(p50) oscillates
in time, with an amplitude of;0.3; while t(p
5

1
2 ) is practically constant (;0.5) in time. The

period of the oscillations is about 40 time step
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II. TEMPORAL OSCILLATIONS OF THE WINNING
PROBABILITIES

A partial explanation for the~steady state! gene distribu-
tion is given in Ref.@7#. It has been found that the probab
ity t(p) of an agent with a gene valuep to win is given by

t~p!51/22ap~12p!, ~1!

wherea,1 is a constant~which depends on the number o
agents,N). This result is used to explain the better perfo
mance of extreme agents as compared to central ones, w
leads to the phenomena of self-segregation@7#. However, the
analytic model presented in Ref.@7# cannot explain the phas
transition ~from self-segregation to clustering! observed in
the exact model@14#.

In Fig. 4 of Ref.@14# we have displayed the time depe
dence of the average gene value^p&, for different values of
the prize-to-fine ratioR. It has been demonstrated that t
distribution P(p) oscillates aroundp5 1

2 . The smaller the
value ofR, the larger are the amplitude and the frequency
the oscillations. Thus, we conclude that a population t
evolves in a tough environment never establishes a ste
state distribution. Agents are constantly changing their st
egies, trying to survive. By doing so, they create global c
rents in the gene space.

The temporal oscillations of̂p& induce larger oscillations
in the winning probabilitiest(p) of the agents. In Fig. 1 we
display the temporal dependence oft(p50) and t(p5 1

2 )
for R51. Figure 2 displays the same quantities for the c
of R50.8. Both figures are produced from exact numeri
simulations of the EMG. We find that when̂p& is even
slightly higher than1

2 , t(p50) ~the winning probability of
an agent who acts against the global memory outcome! is
almost unity.

It should be emphasized that the winning probability o

central agent,t( 1
2 ), displays only mild oscillations. For a
01610
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central agent~characterized byp. 1
2 ), it is basically irrel-

evant which room is more probable to win in the next rou
of the game. In either case, his winning probability is a
proximately 1

2 . In other words, the global gene distributio
of the population has a larger influence on extreme agent
compared to central ones.

It is evident from Figs. 1 and 2 that the amplitude and t
frequency of the oscillations increase as the value of
prize-to-fine ratioR decreases. It is important to note that E
~1! @7# is valid only for a stationary distribution of the gen
values. However, we have shown that the steady state
sumption is only marginally justified forR51, and far from
being correct for smaller values of the prize-to-fine ratioR.

To better quantify the temporal oscillations of the winnin
probabilities, we display in Fig. 3 the corresponding Four
transforms in the frequency domain. One finds that the tra
form becomes sharper as the prize-to-fine ratio decre
~i.e., the oscillations are better characterized by a pure, w
defined frequency!. Figure 4 displays the dependences of t
oscillation period~according to the peak of the transform!
and their amplitude on the prize-to-fine ratioR. The period of
the oscillations decreases with decreasing value ofR, while
the amplitude of the oscillations increases with decreas
value ofR.

We now provide a qualitative explanation for the tempo
oscillation that characterizes the system. Consider for
ample, a situation in whicĥp&, 1

2 at a particular instant of
time. In these circumstances, the winning probability of
agent with a gene valuep. 1

2 is larger than1
2 ~this is due to

the fact that most agents are located in the opposite ha
the gene space, and are therefore making decisions tha
opposite to his decision!. At the same time, agents withp
, 1

2 have a small winning probability, and they are therefo
losing points on the average. Eventually, the scores of so
of these agents fall belowd, in which case they modify their
strategy. The new gene values that are now joining the s
9-2
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FIG. 2. Temporal dependence of the winnin
probabilities forR50.8. The parameters are th
same as in Fig. 1.t(p50) oscillates in time, with
the maximally possible amplitude of;0.5, while
t(p5

1
2 ) is practically constant (;0.5) in time.

The period of the oscillations is about 10 tim
steps.
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tem lead to a global current of gene values from thep, 1
2

side of the gene space to thep. 1
2 side. This increases th

value of ^p&, and eventually the system will cross fro
^p&, 1

2 to ^p&. 1
2 . It must be realized that the reaction of th

system to this transition is not immediate. Agents withp
. 1

2 are quite wealthy at this point~they had large winning
probabilities in the last few rounds!. Thus, even though the
start to lose~due to the fact that most of the population
now concentrated in their half of the gene space!, they donot
modify their gene values immediately. At the same tim
some of the survived agents withp, 1

2 are quite vulnerable
~after losing in the last few turns!, implying that one wrong
choice could drive their score belowd, forcing them to
change strategy. In other words, immediately after the cro
01610
,

s-

ing from ^p&, 1
2 to ^p&. 1

2 , agents withp, 1
2 are still more

likely to change their strategy. Thus, the average gene v
continues to increase. Eventually, agents withp. 1

2 ~the ones
who now have poor winning probabilities! lose enough times
and start to modify their strategy. This will drive the avera
gene value back towards^p&5 1

2 . This periodic behavior re-
peats itself again and again, producing the temporal osc
tions that characterize the system.

III. IMPLICATIONS OF THE TEMPORAL OSCILLATIONS

The main feature that characterizes the system’s beha
is the temporal oscillation of the winning probability. In o
der to capture this effect, we consider two types of age
FIG. 3. Fourier transforms of the winning
probabilities in the frequency domain forR51
~top panel! and R50.8 ~bottom panel!. The pa-
rameters are the same as in Fig. 1.
9-3
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agentA whose winning probability alternates repeatedly b
tween 1 and 0, and agentB whose winning probabilityq is
constantin time. AgentA represents an extreme agentp
50,1) whose winning probability oscillates in time, whi
agentB represents a central agent (p5 1

2 ) whose winning
probability is practically constant in time~see Figs. 1 and 2!,
and is slightly less than12 @7#.

The two types of agents differ in the standard deviation
their success rate, a fact that dictates a different mean
span. Consider for example, the simple case ofR50 andd

521. The mean life span of playerA is 11
2 rounds~aver-

aging over the two situations: starting the game with a v
tory, or losing in the first round of the game!. The probability
of agentB to change his strategy aftern rounds isqn21(1
2q), and his mean life span is therefore given
(0

`nqn21(12q). This equals;1.98 for q50.495 ~this
value ofq is taken from theR51 case!. Thus, agentB has a
longer mean life span. This conclusion is in agreement w
the results of the full nonlinear model~the EMG!, in which it
was demonstrated that under tough conditions (R,Rc) cen-
tral agents perform better than extreme ones~note that this is
despite the fact the the average winning probability of a c
tral agent is less than that of an extreme agent!. On the other
hand, for R51, agentA has an infinite life span, while
lifespan of agentB is finite. Again, this is in agreement wit
the results of the full nonlinear model, according to whi
extreme agents~with large temporal oscillations in their win
ning probability! live longer than central ones in theR.Rc
case.

Figure 5 displays the average lifespan of agentsA andB
as a function of the prize-to-fine ratioR. We find that the
simplified toy model provides a fairly good qualitative d
scription of the complex system. In particular, in theR51
case, agentA ~the extreme one! performs better~with a
longer mean life span! than agentB ~the central one!, in
agreement with the fact that the population tends to s
segregate into opposing groups characterized by extreme
havior @1#. On the other hand, forR,Rc agentA performs
worse, in agreement with the finding@14# that in times of

FIG. 4. Dependence of the oscillation period~solid line! and the
amplitude~dashed line! of the winning probabilities on the value o
the prize-to-fine ratioR. The parameters are the same as in Fig.
01610
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depression the population tends to cluster aroundp5 1
2 .

The simplified model can explain another interesting fe
ture of the full EMG: it was found in Ref.@14# that the

relative concentration@P(0):P( 1
2 )# of agents aroundp50

~andp51) in theR51 (R.Rc) case is larger than the rela

tive concentration@P( 1
2 ):P(0)# of agents aroundp5 1

2 in
the R50.971 (R,Rc) case~see Fig. 1 of Ref.@14#!. This
result can be explained by the fact that the life span diff
ence between the various agents is larger in theR51 case as
compared with theR,Rc case~see Fig. 5!.

It should be realized that in order to have a long avera
life span in theR.Rc case, it is bestnot to take unnecessar
risks. An agent who plays with a constant~i.e., time-
independent! winning probability~agentB) takes the risk of
losing more times than he wins~and this may derive his
score belowd). The average life span of agentB is therefore
shorter than the corresponding average life span of ageA
who wins and loses exactly the same number of times.

On the other hand, in theR,Rc case, agentsmust take
risks in order to survive. An individual agent cannot affo
himself to win and lose the same number of times~since the
fine is larger than the prize!. In order to survive under hars
conditions an agentmustwin more times than he loses. Thu
in such conditions (R,Rc), agentB has a longer averag
life span as compared with agentA ~playing with a constant
winning probability is the best strategy to achieve more w
nings than losses.!

IV. SUMMARY AND DISCUSSION

In summary, we have considered a semianalytical mo
of the evolutionary minority game with an arbitrary value
the prize-to-fine ratioR. The main results and their implica
tions are as follows.

~1! The winning probabilities of the agents display tem
poral oscillations. The smaller the value of the prize-to-fi

.
FIG. 5. The life spans of agentsA and B as a function of the

prize-to-fine ratioR. d524. Agent A wins once every second
round of the game. AgentB has a constant winning probability o
0.495.
9-4
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ratio R, the farther the system is from a steady state distri
tion ~the larger is the amplitude of the oscillations!. Extreme
agents~ones withp50,1) have larger oscillations in the
winning probability as compared with central (p5 1

2 ) agents.
Thus, extreme agents are sensitive to the global gene d
bution of the population~their winning probabilities display
large temporal oscillations!, while central agents have an a
most constant ~time-independent! winning probability
(; 1

2 ).
~2! In the R.Rc case, the population tends toself-

segregateinto opposinggroups. The winning probabilities o
these two groups oscillate in time in such a way that e
group wins and loses approximately the same numbe
times. The efficiency of the system is therefore maximiz
due to the fact that at each round of the game, one of
groups ~containing approximatelyhalf of the population!
wins. Thus, by self-segregation into two opposing grou
the agents cooperate indirectly to achieve an optimum u
zation of their resources.

On the other hand, in theR,Rc case an individual agen
cannot afford himself to win and lose the same number
times. In order to survive under harsh conditions (R,Rc),
an agentmustwin more times than he loses. Thus, in a tou
environment agents cannot cooperate~not even indirectly! by
e

t
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self-segregating into two opposing groups. Rather, they t
to cluster aroundp5 1

2 . Playing with a constant~i.e., time-
independent! winning probability (; 1

2 ) provides an indi-
vidual agent with the best chance to win more times than
loses@an extreme agent on the other hand~with large oscil-
lations in his winning probability! wins and loses approxi
mately the same number of times#. Note that while playing
with a constant winning probability is the only way to su
vive in a tough environment~the only way to win more times
than losing!, it is also the riskiest strategy: such an age
takes the risk of losing more times than he wins.

The clustering phenomena create a situation in which
population as a whole isnot organized. Due to statistica
fluctuations, the average number of winners at each roun
the game is less than half of the population, implying a lo
efficiency of the system as a whole.
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